Sec 2.10: Euler's Numerical Approximation Method

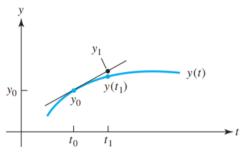
Sometimes getting solution to first order differential equations is very difficult; numerical approximations or geometric schemes can be just as useful.

Euler's Method (Algorithm) Given y' = f(t, y), $y(t_0) = y_0$ and t^* in the domain of definition of the solution y(t). Then, we can approximate $y(t^*)$ in *n*-steps as follows.

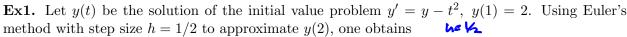
★ Memorize Equation f(til) 2 hf(tin) + f(tin)

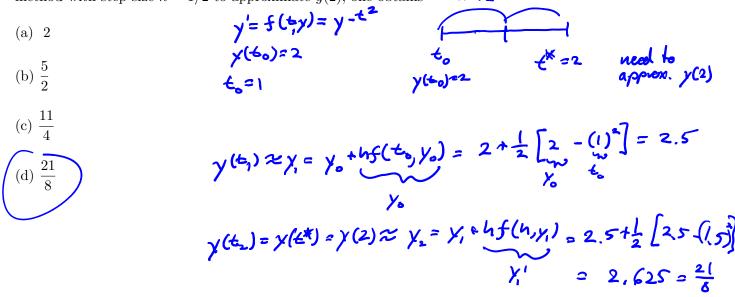
- 1. Compute the step size $h = \frac{t^* t_0}{n}$
- 2. For $i = 1, 2, \dots, n$, compute $t_i = t_0 + ih$
- 3. For $i = 1, 2, \dots, n$, compute $y_i \approx y_{i-1} + hf(t_{i-1}, y_{i-1})$
- 4. y_n is an approximation of $y(t^*)$.

Idea of the Proof:



The line tangent to y(t) at the initial point (t_0, y_0) has slope $f(t_0, y_0)$. Following the tangent line to time t_1 , we arrive at the point (t_1, y_1) and have an approximation, y_1 , to the solution value, $y(t_1)$.





Ex2. Given y' = y + 2 with y(0) = 1, consider n = 3 to approximate y(0.3).

